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Topological light-trapping on a dislocation
Fei-Fei Li 1, Hai-Xiao Wang2, Zhan Xiong2, Qun Lou 1, Ping Chen1, Rui-Xin Wu1,

Yin Poo1, Jian-Hua Jiang2 & Sajeev John2,3

Topological insulators have unconventional gapless edge states where disorder-induced

back-scattering is suppressed. In photonics, such edge states lead to unidirectional wave-

guides which are useful for integrated photonic circuitry. Cavity modes, another type of

fundamental component in photonic chips, however, are not protected by band topology

because of their lower dimensions. Here we demonstrate that concurrent wavevector space

and real-space topology, dubbed as dual-topology, can lead to light-trapping in lower

dimensions. The resultant photonic-bound state emerges as a Jackiw–Rebbi soliton mode

localized on a dislocation in a two-dimensional photonic crystal, as proposed theoretically and

discovered experimentally. Such a strongly confined cavity mode is found to be robust against

perturbations. Our study unveils a mechanism for topological light-trapping in lower

dimensions, which is invaluable for fundamental physics and various applications in

photonics.
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Photonic crystals (PhCs) are periodic structures of
electromagnetic materials which offer versatile tailoring of
photonic spectrum and wave dynamics1–3. Recently,

photonic quantum anomalous Hall effects4–11, photonic
Floquet topological insulators12–14, photonic quantum spin Hall
insulators15–22, topological photonic quasicrystals23–26, and
photonic Zak phases27–29 are realized or proposed using various
PhCs. Topology30–36 is revealed as a mechanism for light-
trapping on the edges of PhCs4–29, leading to topological surface
states which are much more robust than conventional surface
states3. However, until now, topological light-trapping at (sub-)
wavelength scale is achieved only for edges which have one less
dimension than the bulk. Lower-dimensional light-trapping
protected by topological mechanism has not yet been discovered
in photonics. In two-dimensional (2D) photonic systems, such
lower-dimensional wave localization, once realized, can lead to
robust cavity modes (zero-dimensional (0D) photonic states),
which are demanded in photonics and hybrid quantum
systems37.

Here, we predict theoretically and observe experimentally
robust light-trapping into a 0D cavity mode in a 2D PhC, as
induced and protected by the dual-topology mechanism. The
characteristic localization length lloc of the cavity mode is close to
the wavelength in vacuum λ. The frequency of the topological
cavity mode is found to be more robust than conventional PhC
cavities. Strong and robust light-trapping is ubiquitously useful in
the state-of-art photonics such as miniature photonic devices,
integrated photonic/quantum chips, and cavity quantum
electrodynamics. We emphasize that although the dual-topology
mechanism was first proposed in electronic systems38–40, it
is much more feasible to observe and utilize dual-topology
to induce wave localization in photonics than in electronics.
In fact, observation of such d-2 dimensional wave localization in
a d-dimensional electronic system has not yet been achieved.

Results
Dual-topology mechanism. The proposed structure is a
rectangular-lattice PhC with spatial periodicities ax and ay along
the x and y directions, respectively. The photonic band gap (PBG)
has a Chern number C ¼ 1 and the Zak phase33 along the Bril-
louin zone (BZ) boundary line XM is θXM= π. These two special
properties constitute the nontrivial topology in wavevector space.
On the other hand, a dislocation is an object with real-space
topology: any close-loop of lattice translation including the dis-
location has a mismatch between the starting and ending points.
The vector connecting these points, the Burgers vector, serves as
the real-space topological invariant (see Fig. 1a).

To elucidate the light-trapping mechanism through the dual-
topology, we employ the cut-and-glue technique38 (see Figs. 1b
and c) which consists of two steps: first, a chunk of PhC with
trivial topology is inserted into the dislocation structure which is
then split into two halves. This step introduces two one-way edge
channels at the opposite boundaries of the chunk, due to the
wavevector space topology. The dispersions of these two edge
channels must intersect at a time-reversal invariant wavevector.
The nontrivial Zak phase along the XM line ensures such
an intersection to be at Kx ¼ π

ax
27,38. For a finite-width chunk,

the tunnel coupling between the opposite edges opens a gap at
the intersection (Dirac) point. These two coupled edges can
be described by the 1D massive Dirac Hamiltonian,
H ¼ vqxσz þmσx , where v is the group velocity of the edge
states, σz= ±1 represents the two edge channels and qx≡ kx− Kx

is the wavevector relative to the Dirac point. The Dirac mass
m (m is real, see Supplementary Note 1) depends on the
inter-edge coupling. In the weak coupling regime, the Dirac mass

is determined by the overlapping integral of the
electromagnetic fields of the two edge states3, i.e., m /R
d r Eþ �bε � E�

� þHþ � bμ �H�
� þ c:c:

� �
where the subscripts ±

represent the edge states at the upper and lower boundaries,
respectively. Due to the dislocation, the Dirac mass becomes
position dependent, since the upper and lower edges experience
different numbers of lattice translations (see Fig. 1b). If the
Burgers vector is B= (ax, 0), the phase difference between the two
edge states will experience a π-phase elapse across the dislocation,
since Kxax= π. This π-phase elapse leads to a sign-change in the
Dirac mass, forming a mass domain-wall at the dislocation.
According to the Jackiw–Rebbi theory30, there will be a photonic-
bound state localized at the dislocation center.

The second step in the cut-and-glue procedure is to glue the
two halves together by reducing the width of the chunk gradually
to zero. As the width of the chunk reduces, the inter-edge
coupling becomes stronger and stronger. The magnitude of the
Dirac mass increases and the edge states are gradually moved into
the bulk bands. However, because the Dirac mass domain-wall
persists as it is guaranteed by the real- and wavevector-space
topology, the Jackiw–Rebbi soliton mode always exists in the
PBG, even when the chunk of topologically trivial PhC is
removed.

The above scenario of light-trapping by the dual-topology
mechanism can be mathematically summarized as38–42

Nloc ¼
1
π
B �Θ : mod 2; ð1Þ

where Θ ¼ θXM
ax

; θYMay

� �
with θXM and θYM being the Zak phases

along the XM and YM lines with contributions from all bands
below the gap, respectively, and Nloc= 0 or 1 is the number of
localized photonic modes. The existence of the mass domain-wall
and the soliton mode has a Z2 nature, reflecting whether the Dirac
mass switches sign or not (see Supplementary Note 2). We
emphasize that the Chern number, though not appeared in the
above equation, provides the ground for the edge states and the
Jackiw–Rebbi soliton41–44. This crucial requirement differs our
mechanism from those in refs. 45,46, beside the strong wave
localization observed in this work.

Design and characterization of the PhC. To realize light-
trapping due to the dual-topology mechanism, we design a
rectangular-lattice PhC with two yttrium iron garnet (YIG)
cylindrical pillars in each unit cell. With the metallic cladding
above and below, the bulk photonic bands of interest here are the
2D transverse-magnetic (TM) harmonic modes. Magnetized by a
magnetic field of 900 Oe along the z direction, a PBG (denoted as
PBG II) between the third and fourth bands with Chern number
C ¼ 1 is developed for ay= 2ax= 24mm, R= 2mm, and d= 17
mm. This topological PBG is realized by the gyromagnetic effect
which gaps out the two Dirac points (indicated by the red arrow)
on the YM line (see Fig. 2a). The dispersions along the BZ
boundary lines YM and XM after the gap opening are shown in
Fig. 2b together with the Zak phases along these lines. The Zak
phases and the Chern number are calculated numerically using the
Wilson-loop approach (see Supplementary Note 3). The electric
field profiles at high symmetry points (Fig. 2b) indicate connection
and consistency between our diatomic photonic unit cell and the
Su–Schrieffer–Heeger model31: the parity inversion between the X
and M points leads to θXM= π, while the absence of parity
inversion between the Y and M points gives θYM= 027,33.
We obtain from numerical calculations that the Zak phases are
θYM= 0 and θXM= π for the first three bands (Fig. 2b).

The edge states at opposite boundaries indeed intersect at
Kx ¼ π

ax
, as verified by the finite-element simulation method
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(see Fig. 2c), which is consistent with the nontrivial Zak phase
along the XM line, θXM= π 27,38. The edge states dispersion
measured in experiments using the Fourier-transformed field
scan method (see Methods) agrees well with the dispersion from
the finite-element simulation, as shown in Fig. 2c. The
nonreciprocal photon flow along the edge channel, characterized
by the difference between the forward and backward transmis-
sion, is presented in Fig. 2d. Pronounced nonreciprocal photon
flow exists in the frequency window of 12.21–12.84 GHz

(indicated by the black dashed box in Fig. 2d), while relatively
weak nonreciprocal photon transport exists for lower frequencies
as well. The bulk band gap is between 12.05 and 12.60 GHz (see
Supplementary Note 4). The edge states spectrum spans a much
larger frequency range of about 10.7–13.2 GHz. Pronounced
nonreciprocal transmission may appear only in a fraction of this
range, which is possibly caused by the impedance mismatch
between the feed probe and the edge/bulk states for the finite-size
sample studied in our experiments. A higher frequency window
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Fig. 1 Light-trapping on a dislocation due to dual-topology. a Schematic of a dislocation and the Burgers vector in a rectangular lattice. A photonic-bound
state (red region) is localized at the center of the dislocation. b Illustration of the cut-and-glue technique. Inserting a chunk of photonic crystal with trivial
topology (the green strip) into a topological PhC with a dislocation yields two edge channels at opposite boundaries. Because of the additional lattice period
in the lower edge, on the left (right) side of the dislocation there is a π (no) phase difference between the two edge states. c The π phase shift in the edge
channels yields a sign-change in the Dirac mass across the dislocation, forming a Dirac mass domain-wall which results in a photonic Jackiw–Rebbi soliton
mode
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of nonreciprocal transmission is also visible, which is likely due to
the nonreciprocal edge states in the higher PBG (the shallow red
and blue curves in Fig. 2c) and irrelevant to the study in this
work.

Photonic realization of the dual-topology mechanism. In our
design, the dislocation is formed by first taking half column of
unit cells (indicated by the red-dashed rectangular region in
Fig. 3a) away from the perfect PhC. We then compress the rest of
the PhC to the vacancy left to restore the lattice order. This can be
done by continuous deformation of the whole PhC, leaving only
the dislocation center as a structure defect. The final appearance
of the sample measured in experiments (including an inserted
chunk of PhC with trivial band topology) is given in Fig. 3b. The
topologically trivial PhC is designed using the same YIG pillars

but with different lattice constants ax′ ¼ ax=2ð Þ; ay′ ¼ ay=2
� �

and

the distance between the pillars (d′= 5 mm) (see Supplementary
Information Secs. 5 and 6).

To reveal the sign-change feature in the edge states, we use a
two-points pumping scheme. The feed source from a vector
network analyzer Agilent E8363A is divided into two branches by
power divider and connected to the two feed probes (indicated by
the red asterisks in Fig. 3b) through a pair of Gore phase stable
cables, which guarantees that the two feed probes have nearly the
same signal (including magnitude and phase). The sign-change
picture in Fig. 1b is confirmed by the finite-element simulation of

the edge states for the dislocation structure with an inserted
chunk of topologically trivial PhC (see Fig. 3c): on the left (right)
side of the dislocation the two edge waves are of opposite (the
same) phases. Such a sign-change feature, being a smoking-gun
signature of the Dirac mass domain-wall, is confirmed in our
experiments using the two-points pumping scheme (Fig. 3d).
Although each feed probe pumps only one of the edge states, the
relative phase of the two edge states clearly indicates the π phase
elapse induced by the dislocation.

To further verify the cut-and-glue picture, we study the
spectrum and field profiles of the photonic states within the PBG
II during the gluing processes using finite-element simulations.
To employ periodic boundary conditions in the finite-element
simulation, we use a supercell with two chunks of trivial PhCs
and four dislocations (indicated by the green boxes in Fig. 4) to
calculate the eigen-spectrum and the field profiles. The Burgers
vectors of the four dislocations are summed up to zero which is
crucial for the periodic boundary condition. The supercell has a
length of Lx along the x direction, while the length along the y
direction depends on the thickness of the two chunks of
topologically trivial PhCs Ltrivial. We start from the situation
with Ltrivial ¼ 4ay′ where the photonic spectrum in Fig. 4a
indicates merely band-folding of the edge states on all the
boundaries. The field profiles in Fig. 4d and e show that the two
opposite edge channels are nearly independent and uncoupled.
When the thickness is reduced to Ltrivial ¼ ay′, the coupling
between opposite edge channels become considerable. As shown
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dislocation of Burgers vector B= (ax, 0) and an inserted chunk of topologically trivial photonic crystal. c Confirmation of the π phase elapse of the relative
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in Fig. 4b, the spectrum of edge states no longer spans the whole
PBG, a small gap is developed due to such coupling. The
magnitude of this gap is equal to 2|m| where m is the Dirac mass
for the edge states. Within this edge gap there are photonic states
which are weakly localized on the dislocations, i.e., the
Jackiw–Rebbi modes. The localization lengths are comparable
with Lx/2, as indicated in the electric field distributions in Fig. 4f
and g. Hence, the spectrum of the Jackiw–Rebbi states is still
dispersive, due to considerable coupling between nearby
Jackiw–Rebbi modes. The field profiles in Fig. 4f and g indicate
strong mixing between opposite edge channels as well as weak
field localization on the dislocations. Finally, for Ltrivial= 0, the
in-gap photonic spectrum becomes nearly flat (Fig. 4c), indicating
strongly localized states. Indeed, the electromagnetic fields are
entirely localized on the dislocations, as shown in Fig. 4h and i. In
this case, all the edge states are moved into the bulk bands, since

the two chunks are entirely removed from the structure. In this
way, the cut-and-glue picture is completely manifested in
electromagnetism through finite-element simulation of the
Maxwell equations.

Experimental observation of the topological cavity mode.
The experimental setup for the dislocation structure and the
measurement scheme is shown in Fig. 5a. The electromagnetic
wave is excited through the feed probe near the bottom cladding
and detected by the detect-probe near the top cladding. The
feed probe is fixed at a position near the dislocation, while
the detection position is changeable. Both the amplitude and
the phase of the local electromagnetic fields are scanned
using a 2D mapping system in a frequency-resolved manner
(see Methods).
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Our finite-element simulation study indicates that there is
no localized state in the topologically trivial PBG between the
second and the third bands (denoted as PBG I, 8.12–10.17 GHz),
whereas there is one cavity mode in PBG II (topologically
nontrivial PBG, 12.05–12.60 GHz) which is localized on
the dislocation (see Fig. 5b). This observation confirms that
the emergence of the mid-gap cavity mode is solely due to the
dual-topology mechanism: without the nontrivial topology
in wavevector space, the dislocation alone cannot induce
0D light-trapping. The electromagnetic field profile of the
cavity mode indicates strong light-trapping on the dislocation
with a localization length lloc= 1.0λ (estimated from lloc ¼

ffiffiffiffiffiffiffiffiffi
A=π

p

where A is the Gaussian modal-area). Experimentally, we
measure the transmission between two points which are located
at different sides of the dislocation (inset of Fig. 5c). The
transmission has only one peak at 12.37 GHz in the PBG II
(the shaded regions in Fig. 5c–f), indicating only one localized
mid-gap mode. The mode profile measured at the peak frequency
in experiments is comparable with the field profile of the
topological cavity mode from the finite-element simulation
(see the insets of Fig. 5c).

We now study the transmission and the field profiles when the
dislocation structure is perturbed. For instance, we replace one of
the YIG pillar close to the dislocation by a metallic pillar of the
same size. As shown for the cases in Fig. 5d–f, the topological
cavity mode is found to be resilient against such perturbations.
For all these cases, there is only one peak in the transmission
spectrum in the PBG II, which reflects the robustness of the cavity
mode and the topological light-trapping mechanism (for simula-
tions comparable with the experimental results, see Supplemen-
tary Note 7). From the experimental observations, we notice that
the frequency of the topological cavity mode is also stable against
perturbations. The peak frequencies in Fig. 5d–f are 12.43, 12.50,
and 12.43 GHz, respectively (corresponding to a relative change

of 0.5%, 1%, and 0.5% compared to the unperturbed one,
separately). A comparative study with conventional photonic
cavities formed by defect modes in a PhC with a comparable PBG
(but topologically trivial) shows that the frequency of the
topological cavity mode is more stable than the conventional
PhC cavities (see Supplementary Note 8). For the latter system,
the number of cavity modes can also be modified when a nearby
dielectric pillar is replaced by a metallic pillar of the same size,
whereas there is always one topological cavity mode due to the
dual-topology mechanism in the PBG. This observation is
another evidence that the topological cavity mode is more stable
than conventional PhC cavities.

Discussion
Achieving topological light-trapping at d-2 dimensions in a d-
dimensional photonic system opens up the possibility of realizing
many new physical effects and applications. One possible appli-
cation in photonic circuitry, a waveguide-coupler which couples
two chiral edge channels through the topological cavity mode, is
demonstrated in the Supplementary Note 9. The lower-
dimensional topological light-trapping unveiled in this work
gives rise to several important open questions: whether dual-
topology can be exploited to induce wave localization in non-
Hermitian or nonlinear systems where topological lasing28,47–49,
parity-time symmetry, and other important effects can emerge50;
what are the consequences when such topological cavity modes
are coupled with quantum dots or other single-photon emitters;
how to extend to higher dimensions, such as a topological
waveguide induced by a 1D dislocation line in a 3D PhC; can the
dual-topology mechanism be extended to quasi-periodic photonic
systems23–26 where higher-dimensional physics can be simulated
in low-dimensions? All these questions can lead to interesting
physics and applications in the future. Our work paves the way
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toward lower-dimensional topological wave localization through
dual-topology.

Methods
Materials and sample fabrication. All the samples in this paper are fabricated by
the low loss commercial YIG ferrite pillars. The saturation magnetization is
measured as 4πMs= 1884 G by a vibrating sample magnetometer and relative
permittivity is retrieved as 15.26–0.003i by the transmission/reflection method
which can be treated as a constant at the microwave frequencies of interest (i.e., the
PBG II). The fired ferrite is machined into pillars with a radius of R= 2 mm and
height h= 10 mm. The topologically trivial PhC is realized by reducing the lattice
constants to ax′ ¼ ax=2 and ay′ ¼ ay=2, as well as d → d′= 5 mm, while keeping the
radius, height, and material of the pillars unchanged.

Experimental setup and measurement. The measurement setup for the topolo-
gical dislocation, as schematically shown in Fig. 5a, consists of a vector network
analyzer Agilent E8363A, a 2D mapping system, in a structure with top and bottom
metallic cladding using aluminum plates. The upper (fixed) metallic plate has an
area of 1 × 1 m2. The lower metallic plate (movable) has an area of 0.5 × 0.5 m2.
The mapping area can be as large as 0.5 × 0.5 m2 when a single detect-probe is
used. An array consisting of 364 permanent magnet NdFeB pillars are embedded
into a 3-mm-thick aluminum plate (the lower metallic plate) in the sample with the
dislocation. This plate works simultaneously as the metallic cladding as well as the
external magnetic field source. Each NdFeB pillar is of radius 1.5 mm and height 3
mm. It can induce maximally 2800 Oe surface magnetic field. These NdFeB pillars
apply one-to-one external magnetic field to the YIG pillars set between the magnet
plate and top aluminum plate. Since the NdFeB pillars are outside of the metallic
cladding, they do not affect the electromagnetic waves inside the cladding, except
providing the magnetic fields. On average, the NdFeB pillars provide an external
magnetic field of about 900 Oe. The whole photonic structure is surrounded by
microwave absorbers. The field profiles are measured by scanning the electro-
magnetic fields through changing the position of the detect-probe.

Band structure and simulation. The band structure and all the simulations were
calculated by using the commercial software COMSOL MULTIPHYSICS with the
RF module.

Data availability. The data that support the findings of this study are available
from the corresponding authors on reasonable request.
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